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For a fixed dimensional subspace and a function/: both contained in the intersec
tion of a family of U spaces, the best approximation operator r I may be considered
as a function of p as well as of the ohjeetive function( We study the best
approximation operator considering rfixed and p variahle. '19K) AcademIC Press. Inc

1. INTRODUCTION

Let (X, :!#, /1) be a measure space and suppose that V is a finite dimen
sional subspace of L I (X,.diI,/1)nL'(X,!J,/1) and thatfE {L 1(X,:!J,/1)n
L f (X, .14, /1) l\ v. For I <P < x define the best U' approximation operator
at p, T/( p) to be the unique best approximation to / from V using the
U'-norm. That is, T/(p)=V" with 11/-v)I,,=min{II/-vll,,: l'E V}, where
Ilhllp = {Ix Ihl" d/1} 1/1'. That v" exists and is unique follows from the fact
that V is a finite dimensional subspace of a strictly convex normed linear
space. For P = I and p =x, define T /(p) to be the set of best
approximations to / in the corresponding U' norm from V. Finally, define
N/(p) by N/(p) = 11/- T/(p )11" for I <p < CfJ and N/(p) = 11/- hll", hE T/(p)
for p = 1 or p =x.

In this setting we shall study the dependence of the best U'
approximation operator, T/(p), and the distance function, N/(p), on p. The
behavior of the best approximation operator in various settings has been
studied by many authors. The first study of this sort was given by Freud
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[6 J, who showed that the best uniform approximation operator mapping
C[a, h J into a finite dimensional Haar subspace satisfies a local Lipschitz
condition at each!E C[a, h]. These results were extended by Newman and
Shapiro in [14]. In [9, 16 J uniform continuity and uniform Lipschitz
properties of this operator as a function of the elements being
approximated was considered. In [1,7, 10J similar studies of this operator
in a fixed U space were presented. Differentiability properties as a function
of the element being approximated and the behavior of the Lipschitz con
stant as a function of the dimension of the approximating subspace were
studied in [10, 11]. Finally, in [4 J the dependence of the best
approximation problem on the norm being used was considered. Thus, for
P ~ 2, it was shown that the coefficients of the best U approximant to a
fixed f are continuous and differentiable functions of P when approximating
on a continuum. It was noted there and in [5J that this continuous depen
dence on P is precisely the sort of information that one needs in order to
develop a practical implementation of the Polya algorithm [12, 15]. In
fact, in our setting the Polya algorithm and similar results for L 1 [13 Jean
be interpreted as statements about the continuity of rt(p) at p = 00 and
p = I.

2. MAIN RESULTS

We begin by establishing two facts about Nt(p).

THEOREM I. Assume that J1(X) <00. Then, either NAP)/(J1(X))'/p is a
strictly increasing function of p for 1< P < 00 or there exists v E V such that
rt(p) = v for all p E (1,00) and If- vi = k a.e. on X with NAP) = k[J1(X)J I/p
j(Jr all p E ( 1, (0).

Proof Suppose that 1 < p < q < 00. Then by the definition of rip) and
Holder's inequality

Nt(p) = (L If- ripW dJ1 Y/P ::( (Ix If- rf(qW dufP
::( (J1(X))(q-PI/pq (L. If- riqW dJ1 ) Ijq = (J1(X))I/p-l/q NIq).

This shows that N t(p)/(J1(X))l/p is an increasing function of p. Now
equality can occur in the second inequality if and only if 1/- riq)1 = k a.e.
for some k =1= °as fi v. If strict inequality holds for each pair p, q with
p < q then we are done. If on the other hand, equality holds for some p and
q, I <p<q< 00, then we must have that If-rAq)1 =k a.e. We shall show
that in this case that h = riq) is also equal to r As) for all S E (1, (0).
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Now it is known [3J that h=rf(r), 1 <r< =C, if and only if

r If- hi' I sgn(/- h) ui/l = 0
oJ.\'

For r = q, we must therefore have that

r k q
I sgn(/- h) v d/l = 0

·x

Thus,

Ix sgn(/- h) v d/l = 0

and

Lk' I sgn(/- h) v d/l = 0

"IrE V

"Iv E V.

VVE V

and each s E (I ,x). Therefore, by the characterization theorem for best L'
approximations from V stated above we have that hE V is the best L'
approximation to f for each s E (I, "Y~.). Finally,

Nl~) = (Ix If- hi' d/l) I, = k[/l(X)J I,

for all S E ( I, 00) in this case. I
Next, we show that Nf( p) is locally Lipschitz. In this theorem for con

venience we shall normalize the problem by assuming /l(X) = I.

THEOREM 2. Assume /l(X) = I. Then, for p, q E (I ,X), Ip - ql ~ I there
exists a constant K> 0, K independent 0/ p and q such that

INf(p)- Nt<q)1 ~ Klp-ql·

Proof The finite dimensionality of V implies that there exists M <x
such that Ilrt<q)11 'i ~ M for all q E (1, 00). Suppose 1 < q < p < rx. Then,

O~Nf(P)-Nt<q)~Ilf-rt<q)lllj' 'ill'llf- rt<q)II;;/I'-IIf- r t<q)II'1

- [( Ilf- Tt<q)11 ;P)I' 'I _ 1-1 ._ r I

- 11f- rt<q)II}/1' . 111 t<qlli'l

showing that

N(p) - N(q) ~ Ilfll x(B!' q - I)
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where B=((llfllx +M)/Nt(1))I/I'. Thus, we have that

IN(p) - N(q)1 :::; (11fll x Bin B)lp - ql = Kip - ql
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as desired. I
Note that although Nt(p) is strictly increasing unless Tip) = Tlq) for all

p and q, Theorem 1 does not imply Tt is I-I. The following examples
illustrate this.

EXAMPLE 1. In [17, Vol. 2, p. 248] Rice gives an example due to
Descloux [2] in which the Polya algorithm fails. Specifically, a continuous
function f on [- 1, 1] is given such that for V = {ax: a E [P;} and
Tt(p) = al'x, al' fails to converge as p -+ 00. In fact, it is shown that there
exists a monotone sequence Pk such that all' < - i and all' + I> i. Thus,
Tt(p) assumes every value in (-i, i) infinitely often.

EXAMPLE 2. Consider X = {I, 2, 3,4,5} and p( {i}) = 1/5, the counting
measure so that U(X, ;~,4-is simply [p;s with the [I' norm. Set f = (1, 2,
-4, (3+J657)/6, (3-~657)/6) and V= {a(l, 1, 1, 1, 1): a is real}. Then
it is easily seen that 0=TP)=Ti4)""TP).

EXAMPLE 3. Consider [p;6 with the f!' norm. Set f = (0, 0, 0, 2, - 1, - 1)
and V= {a(l, 1, 1, I, 1, 1): a is real}. Then Tt(1)=Tf(2)=0, TtG)=
-0.03257654 and Ti 00) = 1. .

Example 3 has an interesting implication for LI' approximation when
p"" I, 2 or x. Specifically, for a given U approximation problem with
p = I, 2 or 00 there may be a direct method for calculating the best U
approximation. However, for an LI' approximation problem with p not one
of these three values all current computational methods are iterative and
require a starting estimate for TIp). For example, in computing a best L 3

/
l

approximation one might start with an initial estimate for T/~) of 1Tf(1) +
1Tt(2). Unfortunately, Example 3 shows that this need not be a better
starting value than either Til) or Tf (2).

Our last comment about the function Nip) is a conjecture. Namely, we
conjecture that Nt(p) is a concave function of p. That is, for p, q E (1, 00)

and 0:::;),:::; 1, ).Nt( p ) + (1 - ).) Nt(q) :::; Nl~p + (l - A.) q).
We now turn to the best approximation operator Tip). As shown in the

examples above, Tf(p) need not be 1-1. The main question that we shall
consider now is how many times can Tip) assume a fixed value. We first
consider this question in [p;N. Thus, let X = {l, 2, ... , N} and p( {i}) = l/N be
the counting measure so that LI'(X, 86, 11) becomes [p;N with the f!' norm. In
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this setting, we show that rt(p) is either constant or at most /II ~ I to I. We
will have need of the following [8, p. 9, (3.1 )].

LEMMA. If 0 < 1. 1 < ).2 < ... < ;," thcn jor t E [a, h]. V = ; 1'( t) =

L;'~ I a,<: a I'"'' all rcal} is an n dimcnsional Haar suhspaec of C[ a. h].

Now, let V be a subspace of IR" with dimension = n < /II and fix f =
(fl, ... ,/.,)EIR V. For fixedp, pE(I.x) write 'r(p)=(r\"I, ... , rl';:')), where
't(p) E V and is the best I" approximation to f from V. Furthermore. set
r P = f - 'j(p) = (r\PI, ... , r~'I). Then,

THEOREM 3. Suppose that for a fixed p E (I,x), the coordinates of

(Ir\p)I, ... , 11'\;'11) contain k:s; N distinct nonzero values AI ,... , ;'k ordered as
0< )'1 < ... < )'k' Then either ,/q) is equal to Tj(p) for all q E (I, x) or else

riq) can equal rj(p)for at most k -I distinct values of q (including the casc
q=p).

Proof Fix VE V, v=(v l , ... , vN ) and define

N k

F(t) = ~ Irj'T I sgn(rV 1
) v, = ~ h/; 1

i= 1 /- I

where we have rewritten this sum in terms of the nonzero values of 11';"11.
Now suppose that 't(p) is not best for all q E (I, (x:::). Then, at each
qE(I,x) for which 't(p) is optimal, we must have F(q)=O. Assuming v
has been chosen such that F(t) 1= 0, which is possible since Tip) is not best
for all q E (1,00), we have that F(t) has at most k - I zeros in (I, ex)) by the
lemma. I

Note that Example 3 shows that this result is sharp. That is, observe that
e* is the best IP approximation to f provided e* minimizes 31 cl P+ 211 +
el" + 12 - cl p. Setting c = - 0.01, consider g(p) = 3(0.01)1' 1 - 2(0.99)1' I +
(2.01)1' 1. Since g( 1) > 0, g(~) < 0 and q(2) > 0 we see that there exist PI and
P2 with 1 <PI <~<P2<2 for which g(Ptl=g(P2)=0. Since g(p) is essen
tially the derivative of the expression that c* must minimize it follows that
( - 0.01)( I, 1, I" I ,I) is the best IPI and IP' approximation to f from V.
Finally, note that f - '/p I) has exactly three nonzero distinct absolute
values in its coordinates.

Along the same lines one has

COROLLARY 1. If the set {I r;pI! };v~ I contains only one distinct value then
'j(p) = ,tlq) for all q E (1, :xl).

Note that this is not a necessary condition, as shown by the following
example.
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EXAMPLE 4. Let f = (!, 1, !) E [R3 and set V = span {( -1,0, 1)}. Then
tAP)=(O,O,O) for pE(1, 00) and {lrlP)IH~1 has two distinct values. Also,
note that this example shows ·that even if tAP) = h for all P E (1, CfJ), there
need not be a unique best [lor [00 approximation to f.

We now wish to return to the general setting. Thus, let 1<P < 00,

fE LX (X, B, fl), VeL In L 00 be a finite dimensional subspace and let
fE (L I n L (0)\ V with Ilfllx = 1. Fix hE V and define for 1 <P < CfJ

<Pi p) = f)fl P- 1 sgn(.f) h dfl.

Observe thatf, hE Lin LX implies I<PAp )1 < IlfII ~- I fx Ihl dfl < 00 for each
P E (1, CfJ), so that <PAp) is a well-defined function of p.

Now it is easily seen that <p/(p) is an analytic function of p for p E (1, CfJ).
To establish this one first observes that

dk<p (p) f
/ k = Iflp-I(lnlfl)k sgn(.f) h dJl.
p supp(f)

By considering the derivative of the function s(t) = Ink I/t' for t E [1, 00 )

and a>O, one sees that Is(t)1 < (k/ae)k with equality occurring at I=ek/,
(actually, 0< s(t) < (k/ae)k). Thus, rewriting If(x)IP-1(lnlf(x)l)k
lnk(l/f(x))/(1/f(x)) and recalling that Ilfllx=l we see that
Ilf(x)IP I lnklf(x)11 < (k/(p - 1) elk a.e. Hence,

If .. IfIP-I(lnlfl)ksgn(.f)hdfll«( :1) )k f Ihldfl
supp(f) p e x

showing that <p}kl(p) exists and is finite for each p E (1, CfJ), k a positive
integer. .

Now, fix p E (1, CfJ) and consider the Taylor polynomial expansion of
<plq), q E (1, CfJ), of degree n and remainder term Rn(q). Here we have that
for some ~ between p and q that

IRn(q)1 = I(~-qin);, f Ifl¢-l(lnlfW+ 1 sgn(.f)hdfll
n + . supp(f)

(n+1)n+' l(p_q)"+11
~(n+1)!en+1 (~_1)"+1'

By an asymptotic formula for the Gamma function [18, p.253],

(4049).6

(n+1)"+1

(n+1)!e"+ 1
J2n(n + 1) (1 + 0(1/(n + 1)))
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so that we see that the Taylor series of rP/(q) converges to rP/(q) in the inter
val [(p + I )/2, p + (p - I )]. From this it follows that rP,( p) is analytic for
p E (1, "J-J). From this observation one has immediately that

THEOREM 4. IF, t< p) equals the same value or V for an inFinite set 0/
p E (I, Xl) having an accumulation point in (I, x) then '/( p) is identically
this value in Vfor all p.

Proof Suppose {Pi} r~ 1 c (1, (fj), Pi -> Po E (I,x) with '/(Pi) = 0 E V for
all i. Fix hE V and consider rPf( p) for this h. Since rP I( p) is analytic at Po
and rP/(P) vanishes at each P, by the characterization of best U
approximations, it follows that rP/( p) =. 0 for all P E (I, x) by analytic con
tinuation. Thus,

r If II' I sgnU) h dfJ- = 0
·x

vP E (l,x) and VhE V. Hence 0 E V is the best U approximation to f for
all P E ( I, ex;).

Example I shows that the requirement that the accumulation point be in
(I, cf) ) is needed in the above theorem. This is not the case in the discrete
setting. Specifically, let X = {n };;~ I' /JJ = ::!1(X) and fJ-(n) = I for all n. Write
II'(Z) for U(X, tJJj, fJ-). Let fEll (Z) be fixed with Ilfll, = 1 and let V ell (Z)
be a finite dimensional subspace not containing f Then we have

THEOREM 5. Suppose '/(Pi) = Ofor {P']/~I H'ithp,ix. ThenOE Vis the
hest approximation to ff(Jr all p E ( I ,x ).

Proof Let}' I > ~'2 > "l, > ... denote the distinct values taken on by
[If;1 }i'~ I' Now, by hypothesis, 0 being the best II',(Z) approximation to f
from V implies that

f.

IlfY' laU~)h,=O
i= I

Vh = {h,l,' I E V (I)

and conversely, where we have written a(f) for sgnUJ Now, consider the
sums for hE V fixed

I a(f)h i

1/,1 ~-;,

for 1= 1, 2, .... (2)

We claim that for each I, there exists J such that j? J implies (2) sums to
O. Indeed, if not, let }' k be the largest YI for which (2) is not zero on some
subsequence of {Pi}' Then for hE V and p, sufficiently large we have that
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I f.

o~ L III'" I (f(n hI
'/.: i= 1
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I
=:0l L

I k 11,1 >

1/;I",-1dnhi + L (fUi) hi
11;1 ~ "k

Now observe that for Pi> 2,

I~ I III "I
I k 11,1 < 'k

---> 0 as Pi ---> CX).

Hence, we have that O=LII;I~'A (fU;lhi=LII;I~'kI,n'" 1 (fU;lh i for allj
sufficiently large.

However, if there exists Pi such that LII;I~,IIII",-I(f(nhi=O then
LII,I~;I(f(I)h,=O. Thus, for any pE(I,x) one then has that
LII,I ~; ifI" 1 CJ(n hi = 0, Since for each I there exists Pi such that (2) is
zero it' follows that for each I= I, 2, ... and P E (I, CX)) we have that

L 1,/;1" 1 (f(nhi=O.
11,1 0

Hence,

f

L I.fY 1 (JU~) hi = II:; I L III" 1 CJ(n hi = O.
i ~ I 11,1 ~

Thus, 0 is the best 1"(2) approximation to I for all P E (1, :xJ). I
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