JOURNAL OF APPROXIMATION THEORY 49, 274–282 (1987)

Dependence on p of the Best L^{p} Approximation Operator

A. G. Egger

Department of Mathematics, Idaho State University, Pocatello, Idaho 83209, U.S.A.

AND

G. D. TAYLOR

Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523, U.S.A.

Communicated by Charles K. Chui

Received March 25, 1985; revised July 15, 1985

For a fixed dimensional subspace and a function f, both contained in the intersection of a family of L^p spaces, the best approximation operator τ_f may be considered as a function of p as well as of the objective function f. We study the best approximation operator considering f fixed and p variable. + 1987 Academic Press, Inc.

1. INTRODUCTION

Let (X, \mathcal{B}, μ) be a measure space and suppose that V is a finite dimensional subspace of $L^1(X, \mathcal{B}, \mu) \cap L^{\infty}(X, \mathcal{B}, \mu)$ and that $f \in \{L^1(X, \mathcal{B}, \mu) \cap L^{\infty}(X, \mathcal{B}, \mu)\} \setminus V$. For $1 define the best <math>L^p$ approximation operator at p, $\tau_f(p)$ to be the unique best approximation to f from V using the L^p -norm. That is, $\tau_f(p) = v_p$ with $||f - v_p||_p = \min\{||f - v||_p: v \in V\}$, where $||h||_p = \{\int_X |h|^p d\mu\}^{1/p}$. That v_p exists and is unique follows from the fact that V is a finite dimensional subspace of a strictly convex normed linear space. For p = 1 and $p = \infty$ define $\tau_f(p)$ to be the set of best approximations to f in the corresponding L^p norm from V. Finally, define $N_f(p)$ by $N_f(p) = ||f - \tau_f(p)||_p$ for $1 and <math>N_f(p) = ||f - h||_p$, $h \in \tau_f(p)$ for p = 1 or $p = \infty$.

In this setting we shall study the dependence of the best L^p approximation operator, $\tau_j(p)$, and the distance function, $N_j(p)$, on p. The behavior of the best approximation operator in various settings has been studied by many authors. The first study of this sort was given by Freud

[6], who showed that the best uniform approximation operator mapping C[a, b] into a finite dimensional Haar subspace satisfies a local Lipschitz condition at each $f \in C[a, b]$. These results were extended by Newman and Shapiro in [14]. In [9, 16] uniform continuity and uniform Lipschitz properties of this operator as a function of the elements being approximated was considered. In [1, 7, 10] similar studies of this operator in a fixed L^{p} space were presented. Differentiability properties as a function of the element being approximated and the behavior of the Lipschitz constant as a function of the dimension of the approximating subspace were studied in [10, 11]. Finally, in [4] the dependence of the best approximation problem on the norm being used was considered. Thus, for $p \ge 2$, it was shown that the coefficients of the best L^p approximant to a fixed f are continuous and differentiable functions of p when approximating on a continuum. It was noted there and in [5] that this continuous dependence on p is precisely the sort of information that one needs in order to develop a practical implementation of the Polya algorithm [12, 15]. In fact, in our setting the Polya algorithm and similar results for L^1 [13] can be interpreted as statements about the continuity of $\tau_{i}(p)$ at $p = \infty$ and p = 1.

2. MAIN RESULTS

We begin by establishing two facts about $N_t(p)$.

THEOREM 1. Assume that $\mu(X) < \infty$. Then, either $N_f(p)/(\mu(X))^{1/p}$ is a strictly increasing function of p for $1 or there exists <math>v \in V$ such that $\tau_f(p) = v$ for all $p \in (1, \infty)$ and |f-v| = k a.e. on X with $N_f(p) = k[\mu(X)]^{1/p}$ for all $p \in (1, \infty)$.

Proof. Suppose that $1 . Then by the definition of <math>\tau_f(p)$ and Hölder's inequality

$$N_{f}(p) = \left(\int_{X} |f - \tau_{f}(p)|^{p} d\mu\right)^{1/p} \leq \left(\int_{X} |f - \tau_{f}(q)|^{p} du\right)^{1/p}$$
$$\leq (\mu(X))^{(q-p)/pq} \left(\int_{X} |f - \tau_{f}(q)|^{q} d\mu\right)^{1/q} = (\mu(X))^{1/p - 1/q} N_{f}(q).$$

This shows that $N_f(p)/(\mu(X))^{1/p}$ is an increasing function of p. Now equality can occur in the second inequality if and only if $|f - \tau_f(q)| = k$ a.e. for some $k \neq 0$ as $f \notin V$. If strict inequality holds for each pair p, q with p < q then we are done. If on the other hand, equality holds for some p and q, $1 , then we must have that <math>|f - \tau_f(q)| = k$ a.e. We shall show that in this case that $h = \tau_f(q)$ is also equal to $\tau_f(s)$ for all $s \in (1, \infty)$.

Now it is known [3] that $h = \tau_t(r)$, $1 < r < \infty$, if and only if

$$\int_{\mathcal{X}} |f-h|^{r-1} \operatorname{sgn}(f-h) v \, d\mu = 0 \qquad \forall v \in V.$$

For r = q, we must therefore have that

$$\int_{\mathcal{X}} k^{q-1} \operatorname{sgn}(f-h) v \, d\mu = 0 \qquad \forall v \in V.$$

Thus,

$$\int_{\mathcal{X}} \operatorname{sgn}(f-h) v \, d\mu = 0$$

and

$$\int_X k^{s-1} \operatorname{sgn}(f-h) v \, d\mu = 0 \qquad \forall v \in V$$

and each $s \in (1, \infty)$. Therefore, by the characterization theorem for best L^s approximations from V stated above we have that $h \in V$ is the best L^s approximation to f for each $s \in (1, \infty)$. Finally,

$$N_{f}(s) = \left(\int_{X} |f-h|^{s} d\mu\right)^{1/s} = k [\mu(X)]^{1/s}$$

for all $s \in (1, \infty)$ in this case.

Next, we show that $N_j(p)$ is locally Lipschitz. In this theorem for convenience we shall normalize the problem by assuming $\mu(X) = 1$.

THEOREM 2. Assume $\mu(X) = 1$. Then, for $p, q \in (1, \infty)$, $|p-q| \leq 1$ there exists a constant K > 0, K independent of p and q such that $|N_f(p) - N_f(q)| \leq K|p-q|$.

Proof. The finite dimensionality of V implies that there exists $M < \infty$ such that $\|\tau_t(q)\|_{\infty} \leq M$ for all $q \in (1, \infty)$. Suppose $1 < q < p < \infty$. Then,

$$0 \leq N_{f}(p) - N_{f}(q) \leq \|f - \tau_{f}(q)\|_{\infty}^{(p-q),p} \|f - \tau_{f}(q)\|_{q}^{q,p} - \|f - \tau_{f}(q)\|_{q}$$
$$= \left[\left(\frac{\|f - \tau_{f}(q)\|_{\infty}^{1,p}}{\|f - \tau_{f}(q)\|_{q}^{1,p}} \right)^{p-q} - 1 \right] \|f - \tau_{f}(q)\|_{q}$$

showing that

$$N(p) - N(q) \leq ||f||_{\infty} (B^{p-q} - 1)$$

276

where $B = ((||f||_{\infty} + M)/N_{f}(1))^{1/p}$. Thus, we have that

 $|N(p) - N(q)| \le (||f||_{\infty} B \ln B)|p-q| = K|p-q|$

as desired.

Note that although $N_f(p)$ is strictly increasing unless $\tau_f(p) = \tau_f(q)$ for all p and q, Theorem 1 does not imply τ_f is 1–1. The following examples illustrate this.

EXAMPLE 1. In [17, Vol. 2, p. 248] Rice gives an example due to Descloux [2] in which the Polya algorithm fails. Specifically, a continuous function f on [-1, 1] is given such that for $V = \{ax: a \in \mathbb{R}\}$ and $\tau_f(p) = a_p x$, a_p fails to converge as $p \to \infty$. In fact, it is shown that there exists a monotone sequence p_k such that $a_{2p} < -\frac{1}{4}$ and $a_{2p+1} > \frac{1}{4}$. Thus, $\tau_f(p)$ assumes every value in $(-\frac{1}{4}, \frac{1}{4})$ infinitely often.

EXAMPLE 2. Consider $X = \{1, 2, 3, 4, 5\}$ and $\mu(\{i\}) = 1/5$, the counting measure so that $L^p(X, \mathcal{B}, \mu)$ is simply \mathbb{R}^5 with the l^p norm. Set $\mathbf{f} = (1, 2, -4, (3 + \sqrt{657})/6, (3 - \sqrt{657})/6)$ and $V = \{\alpha(1, 1, 1, 1, 1): \alpha \text{ is real}\}$. Then it is easily seen that $\mathbf{O} = \tau_1(2) = \tau_1(4) \neq \tau_1(3)$.

EXAMPLE 3. Consider \mathbb{R}^6 with the l^p norm. Set $\mathbf{f} = (0, 0, 0, 2, -1, -1)$ and $V = \{\alpha(1, 1, 1, 1, 1, 1): \alpha \text{ is real}\}$. Then $\tau_f(1) = \tau_f(2) = \mathbf{O}, \ \tau_f(\frac{3}{2}) = -0.03257654$ and $\tau_f(\infty) = \frac{1}{2}$.

Example 3 has an interesting implication for L^{p} approximation when $p \neq 1$, 2 or ∞ . Specifically, for a given L^{p} approximation problem with p = 1, 2 or ∞ there may be a direct method for calculating the best L^{p} approximation. However, for an L^{p} approximation problem with p not one of these three values all current computational methods are iterative and require a starting estimate for $\tau_{f}(p)$. For example, in computing a best $L^{3/2}$ approximation one might start with an initial estimate for $\tau_{f}(\frac{3}{2})$ of $\frac{1}{2}\tau_{f}(1) + \frac{1}{2}\tau_{f}(2)$. Unfortunately, Example 3 shows that this need not be a better starting value than either $\tau_{f}(1)$ or $\tau_{f}(2)$.

Our last comment about the function $N_f(p)$ is a conjecture. Namely, we conjecture that $N_f(p)$ is a concave function of p. That is, for $p, q \in (1, \infty)$ and $0 \le \lambda \le 1$, $\lambda N_f(p) + (1 - \lambda) N_f(q) \le N_f(\lambda p + (1 - \lambda) q)$.

We now turn to the best approximation operator $\tau_f(p)$. As shown in the examples above, $\tau_f(p)$ need not be 1–1. The main question that we shall consider now is how many times can $\tau_f(p)$ assume a fixed value. We first consider this question in \mathbb{R}^N . Thus, let $X = \{1, 2, ..., N\}$ and $\mu(\{i\}) = 1/N$ be the counting measure so that $L^p(X, \mathcal{B}, \mu)$ becomes \mathbb{R}^N with the l^p norm. In

this setting, we show that $\tau_f(p)$ is either constant or at most N-1 to 1. We will have need of the following [8, p. 9, (3.1)].

LEMMA. If $0 < \lambda_1 < \lambda_2 < \cdots < \lambda_n$ then for $t \in [a, b]$, $V = \{v(t) = \sum_{i=1}^n a_i \lambda'_i: a_1, ..., a_n real\}$ is an n dimensional Haar subspace of C[a, b].

Now, let V be a subspace of \mathbb{R}^N with dimension = n < N and fix $\mathbf{f} = (f_1, ..., f_N) \in \mathbb{R}^N \setminus V$. For fixed p, $p \in (1, \infty)$ write $\tau_f(p) = (\tau_1^{(p)}, ..., \tau_N^{(p)})$, where $\tau_f(p) \in V$ and is the best l^p approximation to f from V. Furthermore, set $\mathbf{r}^p = \mathbf{f} - \tau_f(p) = (r_1^{(p)}, ..., r_N^{(p)})$. Then,

THEOREM 3. Suppose that for a fixed $p \in (1, \infty)$, the coordinates of $(|r_1^{(p)}|,..., |r_N^{(p)}|)$ contain $k \leq N$ distinct nonzero values $\lambda_1,...,\lambda_k$ ordered as $0 < \lambda_1 < \cdots < \lambda_k$. Then either $\tau_f(q)$ is equal to $\tau_f(p)$ for all $q \in (1, \infty)$ or else $\tau_f(q)$ can equal $\tau_f(p)$ for at most k - 1 distinct values of q (including the case q = p).

Proof. Fix $\mathbf{v} \in V$, $\mathbf{v} = (v_1, ..., v_N)$ and define

$$F(t) = \sum_{i=1}^{N} |r_i^{(p)}|^{t-1} \operatorname{sgn}(r_i^{(p)}) v_i = \sum_{j=1}^{k} b_j \lambda_j^{t-1}$$

where we have rewritten this sum in terms of the nonzero values of $|r_i^{(p)}|$. Now suppose that $\tau_f(p)$ is not best for all $q \in (1, \infty)$. Then, at each $q \in (1, \infty)$ for which $\tau_f(p)$ is optimal, we must have F(q) = 0. Assuming v has been chosen such that $F(t) \neq 0$, which is possible since $\tau_f(p)$ is not best for all $q \in (1, \infty)$, we have that F(t) has at most k - 1 zeros in $(1, \infty)$ by the lemma.

Note that Example 3 shows that this result is sharp. That is, observe that c^* is the best l^p approximation to f provided c^* minimizes $3|c|^p + 2|1 + c|^p + |2-c|^p$. Setting c = -0.01, consider $g(p) = 3(0.01)^{p-1} - 2(0.99)^{p-1} + (2.01)^{p-1}$. Since g(1) > 0, $g(\frac{3}{2}) < 0$ and q(2) > 0 we see that there exist p_1 and p_2 with $1 < p_1 < \frac{3}{2} < p_2 < 2$ for which $g(p_1) = g(p_2) = 0$. Since g(p) is essentially the derivative of the expression that c^* must minimize it follows that (-0.01)(1, 1, 1, 1, 1) is the best l^{p_1} and l^{p_2} approximation to **f** from V. Finally, note that $\mathbf{f} - \mathbf{\tau}_f(p_1)$ has exactly three nonzero distinct absolute values in its coordinates.

Along the same lines one has

COROLLARY 1. If the set $\{|r_i^{(p)}|\}_{i=1}^N$ contains only one distinct value then $\tau_t(p) = \tau_t(q)$ for all $q \in (1, \infty)$.

Note that this is not a necessary condition, as shown by the following example.

EXAMPLE 4. Let $\mathbf{f} = (\frac{1}{2}, 1, \frac{1}{2}) \in \mathbb{R}^3$ and set $V = \operatorname{span}\{(-1, 0, 1)\}$. Then $\tau_f(p) = (0, 0, 0)$ for $p \in (1, \infty)$ and $\{|r_i^{(p)}|\}_{i=1}^3$ has two distinct values. Also, note that this example shows that even if $\tau_f(p) = h$ for all $p \in (1, \infty)$, there need not be a unique best l^1 or l^∞ approximation to \mathbf{f} .

We now wish to return to the general setting. Thus, let $1 , <math>f \in L^{\infty}(X, B, \mu)$, $V \subset L^{1} \cap L^{\infty}$ be a finite dimensional subspace and let $f \in (L^{1} \cap L^{\infty}) \setminus V$ with $||f||_{\infty} = 1$. Fix $h \in V$ and define for 1

$$\phi_f(p) = \int_X |f|^{p-1} \operatorname{sgn}(f) h \, d\mu.$$

Observe that $f, h \in L^1 \cap L^\infty$ implies $|\phi_f(p)| \leq ||f||_{\infty}^{p-1} \int_X |h| d\mu < \infty$ for each $p \in (1, \infty)$, so that $\phi_f(p)$ is a well-defined function of p.

Now it is easily seen that $\phi_f(p)$ is an analytic function of p for $p \in (1, \infty)$. To establish this one first observes that

$$\frac{d^k\phi_f(p)}{dp^k} = \int_{\operatorname{supp}(f)} |f|^{p-1} (\ln|f|)^k \operatorname{sgn}(f) h \, d\mu.$$

By considering the derivative of the function $s(t) = \ln^k t/t^{\alpha}$ for $t \in [1, \infty)$ and $\alpha > 0$, one sees that $|s(t)| \leq (k/\alpha e)^k$ with equality occurring at $t = e^{k/\alpha}$ (actually, $0 \leq s(t) \leq (k/\alpha e)^k$). Thus, rewriting $|f(x)|^{p-1} (\ln|f(x)|)^k - \ln^k (1/f(x))/(1/f(x))$ and recalling that $||f||_{\infty} = 1$ we see that $||f(x)|^{p-1} \ln^k |f(x)|| \leq (k/(p-1)e)^k$ a.e. Hence,

$$\left|\int_{\operatorname{supp}(f)} |f|^{p-1} (\ln|f|)^k \operatorname{sgn}(f) h \, d\mu\right| \leq \left(\frac{k}{(p-1)e}\right)^k \int_X |h| \, d\mu$$

showing that $\phi_f^{(k)}(p)$ exists and is finite for each $p \in (1, \infty)$, k a positive integer.

Now, fix $p \in (1, \infty)$ and consider the Taylor polynomial expansion of $\phi_f(q)$, $q \in (1, \infty)$, of degree *n* and remainder term $R_n(q)$. Here we have that for some ξ between *p* and *q* that

$$|R_n(q)| = \left| \frac{(p-q)^{n+1}}{(n+1)!} \int_{\text{supp}(f)} |f|^{\xi-1} (\ln|f|)^{n+1} \operatorname{sgn}(f) h \, d\mu \right|$$
$$\leq \frac{(n+1)^{n+1}}{(n+1)! \, e^{n+1}} \left| \frac{(p-q)^{n+1}}{(\xi-1)^{n+1}} \right|.$$

By an asymptotic formula for the Gamma function [18, p. 253],

$$\frac{(n+1)^{n+1}}{(n+1)! e^{n+1}} = \frac{1}{\sqrt{2\pi(n+1)} \left(1 + \mathcal{O}(1/(n+1))\right)}$$

640:49:3-6

so that we see that the Taylor series of $\phi_f(q)$ converges to $\phi_f(q)$ in the interval [(p+1)/2, p+(p-1)]. From this it follows that $\phi_f(p)$ is analytic for $p \in (1, \infty)$. From this observation one has immediately that

THEOREM 4. If $\tau_f(p)$ equals the same value of V for an infinite set of $p \in (1, \infty)$ having an accumulation point in $(1, \infty)$ then $\tau_f(p)$ is identically this value in V for all p.

Proof. Suppose $\{p_i\}_{i=1}^{\infty} \subset (1, \infty), p_i \to p_0 \in (1, \infty)$ with $\tau_f(p_i) = 0 \in V$ for all *i*. Fix $h \in V$ and consider $\phi_f(p)$ for this *h*. Since $\phi_f(p)$ is analytic at p_0 and $\phi_f(p)$ vanishes at each p_i by the characterization of best L^p approximations, it follows that $\phi_f(p) \equiv 0$ for all $p \in (1, \infty)$ by analytic continuation. Thus,

$$\int_X |f|^{p-1} \operatorname{sgn}(f) h \, d\mu = 0$$

 $\forall p \in (1, \infty)$ and $\forall h \in V$. Hence $0 \in V$ is the best L^p approximation to f for all $p \in (1, \infty)$.

Example 1 shows that the requirement that the accumulation point be in $(1, \infty)$ is needed in the above theorem. This is not the case in the discrete setting. Specifically, let $X = \{n\}_{n=1}^{\infty}$, $\mathcal{B} = \mathcal{P}(X)$ and $\mu(n) = 1$ for all *n*. Write $l^{p}(Z)$ for $L^{p}(X, \mathcal{B}, \mu)$. Let $f \in l^{1}(Z)$ be fixed with $||f||_{\infty} = 1$ and let $V \subset l^{1}(Z)$ be a finite dimensional subspace not containing *f*. Then we have

THEOREM 5. Suppose $\tau_f(p_i) = 0$ for $\{p_i\}_{i=1}^{\infty}$ with $p_i \uparrow \infty$. Then $0 \in V$ is the best approximation to f for all $p \in (1, \infty)$.

Proof. Let $\gamma_1 > \gamma_2 > \gamma_3 > \cdots$ denote the distinct values taken on by $\{|f_i|\}_{i=1}^{\times}$. Now, by hypothesis, **O** being the best $l^{p_i}(Z)$ approximation to **f** from V implies that

$$\sum_{i=1}^{\infty} |f_i|^{p_i-1} \sigma(f_i) h_i = 0 \qquad \forall \mathbf{h} = \{h_i\}_{i=1}^{\infty} \in V$$
(1)

and conversely, where we have written $\sigma(f_i)$ for $sgn(f_i)$. Now, consider the sums for $\mathbf{h} \in V$ fixed

$$\sum_{\|f_i\|=\gamma_i} \sigma(f_i) h_i \quad \text{for} \quad l=1, 2, \dots$$
 (2)

We claim that for each l, there exists J such that $j \ge J$ implies (2) sums to 0. Indeed, if not, let γ_k be the largest γ_l for which (2) is not zero on some subsequence of $\{p_i\}$. Then for $\mathbf{h} \in V$ and p_j sufficiently large we have that

$$\begin{split} 0 & \frac{1}{\gamma_{k}^{p_{i}-1}} \sum_{i=1}^{\infty} |f_{i}|^{p_{i}-1} \sigma(f_{i}) h_{i} \\ &= \frac{1}{\gamma_{k}^{p_{i}-1}} \sum_{|f_{i}| \geq \gamma_{k}} |f_{i}|^{p_{i}-1} \sigma(f_{i}) h_{i} + \sum_{|f_{i}| = \gamma_{k}} \sigma(f_{i}) h_{i} \\ &\quad + \frac{1}{\gamma_{k}^{p_{i}-1}} \sum_{|f_{i}| < \gamma_{k}} |f_{i}|^{p_{i}-1} \sigma(f_{i}) h_{i} \\ &= 0 + \sum_{|f_{i}| = \gamma_{k}} \sigma(f_{i}) h_{i} + \frac{1}{\gamma_{k}^{p_{i}-1}} \sum_{|f_{i}| < \gamma_{k}} |f_{i}|^{p_{i}-1} \sigma(f_{i}) h_{i}. \end{split}$$

Now observe that for $p_i > 2$.

$$\left|\frac{1}{\gamma_{k}^{p_{j}-1}}\sum_{|f_{i}| \leq \gamma_{k}}|f_{i}|^{p_{j}-1}\sigma(f_{i})h_{i}f_{i}\right| \leq \frac{1}{\gamma_{k}^{p_{j}-1}}\sum_{|f_{i}| \leq \gamma_{k}}|f_{i}|^{p_{j}-1}|h_{i}|$$
$$\leq \left(\frac{\gamma_{k}+1}{\gamma_{k}}\right)^{p_{j}-1}\|\mathbf{h}\|_{1}$$
$$\to 0 \quad \text{as} \quad p_{j} \to \infty.$$

Hence, we have that $0 = \sum_{|f_i| = \gamma_k} \sigma(f_i) h_i = \sum_{|f_i| = \gamma_k} |f_i|^{p_i - 1} \sigma(f_i) h_i$ for all j sufficiently large.

However, if there exists p_i such that $\sum_{|f_i|=\gamma_i} |f_i|^{p_i-1} \sigma(f_i) h_i = 0$ then $\sum_{|f_i|=\gamma_i} \sigma(f_i) h_i = 0$. Thus, for any $p \in (1, \infty)$ one then has that $\sum_{|f_i|=\gamma_i} |f_i|^{p-1} \sigma(f_i) h_i = 0$. Since for each l there exists p_i such that (2) is zero it follows that for each l = 1, 2,... and $p \in (1, \infty)$ we have that

$$\sum_{\|f_i\|=\gamma_i} \|f_i\|^{p-1} \sigma(f_i) h_i = 0.$$

Hence,

$$\sum_{i=1}^{\infty} |f_i|^{p-1} \sigma(f_i) h_i = \sum_{l=1}^{\infty} \sum_{|f_i| = \gamma_l} |f_i|^{p-1} \sigma(f_i) h_i = 0.$$

Thus, **O** is the best $l^p(Z)$ approximation to f for all $p \in (1, \infty)$.

ACKNOWLEDGMENTS

This research was supported in part by the Naval Environmental Prediction Research Facility. Monterey, California, ONR-N00014-84-0591; and the National Science Foundation, ATM-8510664.

EGGER AND TAYLOR

REFERENCES

- 1. B. O. BJÖRNESTAL, Local Lipschitz continuity of the metric projection operator, in "Approximation Theory," Banach Center Publ. 4, pp. 43–53, PWN, Warsaw, 1979.
- 2. J. DESCLOUX, Approximations in L^p and Chebyshev approximations, SIAM J. 11 (1963), 1017–1026.
- 3. F. R. DEUTSCH AND P. H. MASERICK, Applications of the Hahn-Banach theorem in approximation theory, SIAM Rev. 9 (1967), 516-530.
- 4. R. FLETCHER, J. A. GRANT, AND M. D. HEBDEN, The continuity and differentiability of the parameters of best linear L_p approximations, J. Approx. Theory 10 (1974), 69–73.
- R. FLETCHER, J. A. GRANT AND M. D. HEBDEN, Linear minimax approximation as the limit of best L_p approximations, SIAM J. Numer. Anal. 11 (1974), 121-135.
- G. FREUD, Eine Ungleichung f
 ür Tschebysheffsche Approximationspolynome, Acta Sci. Math. (Szeged) 19 (1958), 162–164.
- 7. R. HOLMES AND B. KRIPKE, Smoothness of approximation, Michigan Math. J. 15 (1968), 225-248.
- 8. S. J. KARLIN AND W. J. STUDDEN, "Tchebycheff Systems: With Applications in Analysis and Statistics," Wiley-Interscience, New York, 1966.
- 9. A. KROÓ, The continuity of best approximations, Acta Math. Acad. Sci. Hungar. 30 (1977), 175-188.
- A. KROÓ, Differential properties of the operator of best approximation, Acta Math. Acad. Sci. Hungar. 30 (1977), 319-333.
- A. KROÓ, The Lipschitz constant of the operator of best approximation, Acta Math. Acad. Sci. Hungar. 35 (1980), 279–292.
- 12. A. KROÓ, On the convergence of Polya's algorithm, J. Approx. Theory 30 (1980), 139-148.
- D. LANDERS AND L. ROGGE, Natural choice of L₁-approximants, J. Approx. Theory 33 (1981), 268–280.
- 14. D. J. NEWMAN AND H. S. SHAPIRO, Some theorems on Cebysev approximation, *Duke Math. J.* **30** (1963), 673-681.
- G. POLYA, Sur un algorithm toujours convergent pour obtenir les polynomes de meilleure approximation de Tchebycheff pour une fonction continue quelconque, C. R. Acad. Sci. Paris 157 (1913), 840–843.
- S. J. POREDA, A note on the continuity of best polynomial approximations, *Pacific J. Math.* 51 (1974), 271-272.
- 17. J. RICE, "The Approximation of Functions," Vol. II, Addison-Wesley, Reading, Mass., 1964.
- E. T. WHITTAKER AND G. N. WATSON, "A Course of Modern Analysis," 4th ed., Cambridge Univ. Press, London New York, 1965.