Dependence on p of the Best L^{p} Approximation Operator

A. G. EgGER
Department of Mathematics, Idaho State Uinitersity: Pocatello, Idaho 83209. U.S.A.
AND
G. D. TAylor
Department of Mathematics, Colorado State Linitersity, Fort Collins, Colorado 80523. U.S.A.
Communicated by Charles K. Chui

Received March 25, 1985; revised July 15, 1985

Abstract

For a fixed dimensional subspace and a function f, both contained in the intersection of a family of L^{p} spaces, the best approximation operator τ, may be considered as a function of p as well as of the objective function $/$. We study the best approximation operator considering / fixed and p variable. 1 1987 Acudemic Press. Inc

1. Introduction

Let (X, \mathscr{B}, μ) be a measure space and suppose that V is a finite dimensional subspace of $L^{1}(X, B, \mu) \cap L^{*}(X, B, \mu)$ and that $f \in\left\{L^{1}(X, B, \mu) \cap\right.$ $\left.L^{*}(X, \mathscr{B}, \mu)\right\} \backslash V$. For $1<p<x$ define the best L^{p} approximation operator at $p, \tau_{,}(p)$ to be the unique best approximation to f from V using the L^{p}-norm. That is, $\tau_{f}(p)=v_{p}$, with $\left\|f-v_{p}\right\|_{p}=\min _{\{ }\left\{\|f-v\|_{p}: v \in V\right\}$, where $\|h\|_{p}=\left\{\int_{x}|h|^{p} d \mu\right\}^{1 / p}$. That v_{p} exists and is unique follows from the fact that V is a finite dimensional subspace of a strictly convex normed linear space. For $p=1$ and $p=\infty$ define $\tau,(p)$ to be the set of best approximations to f in the corresponding L^{p} norm from V. Finally, define $N_{f}(p)$ by $N_{f}(p)=\left\|f-\tau_{f}(p)\right\|_{p}$ for $1<p<\infty$ and $N_{f}(p)=\|f-h\|_{p}, h \in \tau_{f}(p)$ for $p=1$ or $p=\infty$.

In this setting we shall study the dependence of the best L^{p} approximation operator, $\tau_{f}(p)$, and the distance function, $N_{f}(p)$, on p. The behavior of the best approximation operator in various settings has been studied by many authors. The first study of this sort was given by Freud
[6], who showed that the best uniform approximation operator mapping $C[a, b]$ into a finite dimensional Haar subspace satisfies a local Lipschitz condition at each $f \in C[a, b]$. These results were extended by Newman and Shapiro in [14]. In [9,16] uniform continuity and uniform Lipschitz properties of this operator as a function of the elements being approximated was considered. In $[1,7,10]$ similar studies of this operator in a fixed L^{p} space were presented. Differentiability properties as a function of the element being approximated and the behavior of the Lipschitz constant as a function of the dimension of the approximating subspace were studied in [10, 11]. Finally, in [4] the dependence of the best approximation problem on the norm being used was considered. Thus, for $p \geqslant 2$, it was shown that the coefficients of the best L^{p} approximant to a fixed f are continuous and differentiable functions of p when approximating on a continuum. It was noted there and in [5] that this continuous dependence on p is precisely the sort of information that one needs in order to develop a practical implementation of the Polya algorithm [12, 15]. In fact, in our setting the Polya algorithm and similar results for L^{1} [13] can be interpreted as statements about the continuity of $\tau_{f}(p)$ at $p=\infty$ and $p=1$.

2. Main Results

We begin by establishing two facts about $N_{f}(p)$.
Theorem 1. Assume that $\mu(X)<\infty$. Then, either $N_{f}(p) /(\mu(X))^{1 / p}$ is a strictly increasing function of p for $1<p<\infty$ or there exists $v \in V$ such that $\tau,(p)=v$ for all $p \in(1, \infty)$ and $|f-v|=k$ a.e. on X with $N_{f}(p)=k[\mu(X)]^{1 / p}$ for all $p \in(1, \infty)$.

Proof. Suppose that $1<p<q<\infty$. Then by the definition of $\tau_{f}(p)$ and Hölder's inequality

$$
\begin{aligned}
N_{f}(p) & =\left(\int_{X}\left|f-\tau_{f}(p)\right|^{p} d \mu\right)^{1 / p} \leqslant\left(\int_{X}\left|f-\tau_{f}(q)\right|^{p} d u\right)^{1 / p} \\
& \leqslant(\mu(X))^{(u-p) / p u}\left(\int_{X}\left|f-\tau_{f}(q)\right|^{q} d \mu\right)^{1 / q}=(\mu(X))^{1 / p-1 / q} N_{f}(q)
\end{aligned}
$$

This shows that $N_{f}(p) /(\mu(X))^{1 / p}$ is an increasing function of p. Now equality can occur in the second inequality if and only if $\left|f-\tau_{f}(q)\right|=k$ a.e. for some $k \neq 0$ as $f \notin V$. If strict inequality holds for each pair p, q with $p<q$ then we are done. If on the other hand, equality holds for some p and $q, 1<p<q<\infty$, then we must have that $\left|f-\tau_{f}(q)\right|=k$ a.e. We shall show that in this case that $h=\tau_{f}(q)$ is also equal to $\tau_{f}(s)$ for all $s \in(1, \infty)$.

Now it is known [3] that $h=\tau(r), 1<r<x$, if and only if

$$
\int_{x} \mid f-h^{\prime}{ }^{\prime} \operatorname{sgn}(f-h) v d \mu=0 \quad \forall v \in V
$$

For $r=q$, we must therefore have that

$$
\int_{x} k^{q-1} \operatorname{sgn}(f-h) v d \mu=0 \quad \forall v \in V .
$$

Thus,

$$
\int_{x} \operatorname{sgn}(f-h) v d \mu=0
$$

and

$$
\int_{x} k^{v} \cdot \operatorname{sgn}(f-h) v d \mu=0 \quad \forall v \in V
$$

and each $s \in(1, \infty)$. Therefore, by the characterization theorem for best L^{s} approximations from V stated above we have that $h \in V$ is the best L^{\prime} approximation to f for each $s \in(1, x)$. Finally,

$$
N_{f}(s)=\left(\int_{X}|f-h|^{s} d \mu\right)^{1 \cdot x}=k[\mu(X)]^{1 / s}
$$

for all $s \in(1, \infty)$ in this case.
Next, we show that $N_{f}(p)$ is locally Lipschitz. In this theorem for convenience we shall normalize the problem by assuming $\mu(X)=1$.

Theorem 2. Assume $\mu(X)=1$. Then, for $p, q \in(1, \infty),|p-q| \leqslant 1$ there exists a constant $K>0, K$ independent of p and q such that $\left|N_{f}(p)-N_{f}(q)\right| \leqslant K|p-q|$.

Proof. The finite dimensionality of V implies that there exists $M<\infty$ such that $\left\|\tau_{\mathcal{A}}(q)\right\|_{x} \leqslant M$ for all $q \in(1, \infty)$. Suppose $1<q<p<\infty$. Then,

$$
\begin{aligned}
& 0 \leqslant N_{f}(p)-N_{f}(q) \leqslant\left\|f-\tau_{f}(q)\right\|_{*}^{(p} \quad q\|p\| f-\tau_{f}(q)\left\|_{\psi}^{q / p}-\right\| f-\tau_{f}(q) \|_{4} \\
& =\left[\left(\frac{\|f-\tau,(q)\|_{\frac{1}{x}}^{1 / p}}{\|f-\tau,(q)\|_{q}^{1 / p}}\right)^{p}-1\right]\|f-\tau,(q)\|_{q}
\end{aligned}
$$

showing that

$$
N(p)-N(q) \leqslant\|f\|_{\infty}\left(B^{p-4}-1\right)
$$

where $B=\left(\left(\|f\|_{x}+M\right) / N_{f}(1)\right)^{1 / p}$. Thus, we have that

$$
|N(p)-N(q)| \leqslant\left(\|f\|_{x} B \ln B\right)|p-q|=K|p-q|
$$

as desired.
Note that although $N_{f}(p)$ is strictly increasing unless $\tau_{f}(p)=\tau_{f}(q)$ for all p and q, Theorem 1 does not imply τ_{f} is $1-1$. The following examples illustrate this.

Example 1. In [17, Vol. 2, p.248] Rice gives an example due to Descloux [2] in which the Polya algorithm fails. Specifically, a continuous function f on $[-1,1]$ is given such that for $V=\{a x: a \in \mathbb{R}\}$ and $\tau_{f}(p)=a_{p} x, a_{p}$ fails to converge as $p \rightarrow \infty$. In fact, it is shown that there exists a monotone sequence p_{k} such that $a_{2 p}<-\frac{1}{4}$ and $a_{2 p+1}>\frac{1}{4}$. Thus, $\tau,(p)$ assumes every value in $\left(-\frac{1}{4}, \frac{1}{4}\right)$ infinitely often.

Example 2. Consider $X=\{1,2,3,4,5\}$ and $\mu(\{i\})=1 / 5$, the counting measure so that $L^{p}(X, \mathscr{B}, \mu)$ is simply \mathbb{R}^{5} with the l^{p} norm. Set $\mathbf{f}=(1,2$, $-4,(3+\sqrt{657}) / 6,(3-\sqrt{657}) / 6)$ and $V=\{\alpha(1,1,1,1,1): \alpha$ is real $\}$. Then it is easily seen that $\mathbf{O}=\tau_{f}(2)=\tau_{f}(4) \neq \tau_{f}(3)$.

Example 3. Consider \mathbb{R}^{6} with the l^{p} norm. Set $f=(0,0,0,2,-1,-1)$ and $V=\{\alpha(1,1,1,1,1,1): \alpha$ is real $\}$. Then $\tau_{f}(1)=\tau_{f}(2)=\mathbf{O}, \tau_{f}\left(\frac{3}{2}\right)=$ -0.03257654 and $\tau_{f}(\infty)=\frac{1}{2}$.

Example 3 has an interesting implication for L^{p} approximation when $p \neq 1,2$ or ∞. Specifically, for a given L^{p} approximation problem with $p=1,2$ or ∞ there may be a direct method for calculating the best L^{p} approximation. However, for an L^{p} approximation problem with p not one of these three values all current computational methods are iterative and require a starting estimate for $\tau_{f}(p)$. For example, in computing a best $L^{3 / 2}$ approximation one might start with an initial estimate for $\tau_{f}\left(\frac{3}{2}\right)$ of $\frac{1}{2} \tau_{f}(1)+$ $\frac{1}{2} \tau_{f}(2)$. Unfortunately, Example 3 shows that this need not be a better starting value than either $\tau_{f}(1)$ or $\tau_{f}(2)$.

Our last comment about the function $N_{f}(p)$ is a conjecture. Namely, we conjecture that $N_{f}(p)$ is a concave function of p. That is, for $p, q \in(1, \infty)$ and $0 \leqslant \lambda \leqslant 1, \lambda N_{f}(p)+(1-\lambda) N_{f}(q) \leqslant N_{f}(\lambda p+(1-\lambda) q)$.

We now turn to the best approximation operator $\tau_{f}(p)$. As shown in the examples above, $\tau_{f}(p)$ need not be $1-1$. The main question that we shall consider now is how many times can $\tau_{f}(p)$ assume a fixed value. We first consider this question in \mathbb{R}^{N}. Thus, let $X=\{1,2, \ldots, N\}$ and $\mu(\{i\})=1 / N$ be the counting measure so that $L^{p}(X, \mathscr{B}, \mu)$ becomes $\mathbb{R}^{\mathcal{N}}$ with the l^{P} norm. In
this setting, we show that $\tau_{f}(p)$ is either constant or at most $N-1$ to 1 . We will have need of the following [8, p. 9, (3.1)].

Lemma. If $0<\lambda_{1}<\lambda_{2}<\cdots<i_{n}$ then for $t \in[a, h], \quad V=\{(t)=$ $\sum_{i=1}^{n} a_{i} \lambda_{i}^{\prime}: a_{1}, \ldots, a_{n}$ real $\}$ is an n dimensional Haar subspace of $C[a, b]$.

Now, let V be a subspace of \mathbb{R}^{N} with dimension $=n<N$ and fix $\mathbf{f}=$ $\left(f_{1}, \ldots, f_{N}\right) \in \mathbb{R}^{N} \backslash V$. For fixed $p, p \in(1, \infty)$ write $\tau_{\mathrm{f}}(p)=\left(\tau_{1}^{(p)}, \ldots, \tau_{N}^{(p)}\right)$, where $\tau(p) \in V$ and is the best l^{p} approximation to f from V. Furthermore, set $\mathbf{r}^{p}=\mathbf{f}-\boldsymbol{\tau}_{f}(p)=\left(r_{1}^{(p)}, \ldots, r_{N}^{(p)}\right)$. Then,

Theorem 3. Suppose that for a fixed $p \in(1, \infty)$, the coordinates of $\left(\left|r_{1}^{(p)}\right|, \ldots,\left|r_{N}^{(p)}\right|\right)$ contain $k \leqslant N$ distinct nonzero values $i_{1}, \ldots, \lambda_{k}$ ordered as $0<\lambda_{1}<\cdots<\lambda_{k}$. Then either $\tau_{f}(q)$ is equal to $\tau_{f}(p)$ for all $q \in(1, x)$ or else $\tau_{f}(q)$ can equal $\tau_{f}(p)$ for at most $k-1$ distinct values of q (including the case $q=p$).

Proof. Fix $\mathbf{v} \in V, \mathbf{v}=\left(v_{1}, \ldots, v_{N}\right)$ and define

$$
F(t)=\sum_{i=1}^{N}\left|r_{i}^{(p)}\right|^{t-1} \operatorname{sgn}\left(r_{i}^{(p)}\right) v_{i}=\sum_{i=1}^{K} b_{i} i_{j}^{\prime}-1
$$

where we have rewritten this sum in terms of the nonzero values of $\left|r_{i}^{(p)}\right|$. Now suppose that $\tau_{f}(p)$ is not best for all $q \in(1, \infty)$. Then, at each $q \in(1, \infty)$ for which $\tau_{f}(p)$ is optimal, we must have $F(q)=0$. Assuming v has been chosen such that $F(t) \not \equiv 0$, which is possible since $\tau_{f}(p)$ is not best for all $q \in(1, \infty)$, we have that $F(t)$ has at most $k-1$ zeros in $(1, \infty)$ by the lemma.

Note that Example 3 shows that this result is sharp. That is, observe that c^{*} is the best l^{p} approximation to f provided c^{*} minimizes $3|c|^{p}+2 \mid 1+$ $\left.c\right|^{p}+|2-c|^{p}$. Setting $c=-0.01$, consider $g(p)=3(0.01)^{p-1}-2(0.99)^{p}+$ $(2.01)^{p-1}$. Since $g(1)>0, g\left(\frac{3}{2}\right)<0$ and $q(2)>0$ we see that there exist p_{1} and p_{2} with $1<p_{1}<\frac{3}{2}<p_{2}<2$ for which $g\left(p_{1}\right)=g\left(p_{2}\right)=0$. Since $g(p)$ is essentially the derivative of the expression that c^{*} must minimize it follows that $(-0.01)(1,1,1,, 1,1)$ is the best $l^{p_{1}}$ and $l^{p_{2}}$ approximation to \mathbf{f} from V. Finally, note that $\mathbf{f}-\boldsymbol{\tau}_{f}\left(p_{1}\right)$ has exactly three nonzero distinct absolute values in its coordinates.

Along the same lines one has
Corollary 1. If the set $\left\{\left|r_{i}^{(p)}\right|\right\}_{i=1}^{N}$ contains only one distinct value then $\tau_{f}(p)=\tau_{f}(q)$ for all $q \in(1, \infty)$.

Note that this is not a necessary condition, as shown by the following example.

Example 4. Let $\mathbf{f}=\left(\frac{1}{2}, 1, \frac{1}{2}\right) \in \mathbb{R}^{3}$ and set $V=\operatorname{span}\{(-1,0,1)\}$. Then $\tau_{f}(p)=(0,0,0)$ for $p \in(1, \infty)$ and $\left\{\mid r_{i}^{(p)}\right\}_{i=1}^{3}$ has two distinct values. Also, note that this example shows that even if $\tau_{f}(p)=h$ for all $p \in(1, \infty)$, there need not be a unique best l^{1} or l^{∞} approximation to \mathbf{f}.

We now wish to return to the general setting. Thus, let $1<p<\infty$, $f \in L^{\infty}(X, B, \mu), V \subset L^{1} \cap L^{\infty}$ be a finite dimensional subspace and let $f \in\left(L^{1} \cap L^{\infty}\right) \backslash V$ with $\|f\|_{\infty}=1$. Fix $h \in V$ and define for $1<p<\infty$

$$
\phi_{f}(p)=\int_{X}|f|^{p-1} \operatorname{sgn}(f) h d \mu
$$

Observe that $f, h \in L^{1} \cap L^{\infty}$ implies $\left|\phi_{\lambda}(p)\right| \leqslant\|f\|_{\infty}^{p-1} \int_{X}|h| d \mu<\infty$ for each $p \in(1, \infty)$, so that $\phi_{f}(p)$ is a well-defined function of p.

Now it is easily seen that $\phi_{f}(p)$ is an analytic function of p for $p \in(1, \infty)$. To establish this one first observes that

$$
\frac{d^{k} \phi_{f}(p)}{d p^{k}}=\int_{\text {supp }(f)}|f|^{p-1}(\ln |f|)^{k} \operatorname{sgn}(f) h d \mu
$$

By considering the derivative of the function $s(t)=\ln ^{k} t / t^{x}$ for $t \in[1, \infty)$ and $\alpha>0$, one sees that $|s(t)| \leqslant(k / \alpha e)^{k}$ with equality occurring at $t=e^{k / x}$ (actually, $\left.\quad 0 \leqslant s(t) \leqslant(k / \alpha e)^{k}\right)$. Thus, rewriting $\quad|f(x)|^{p-1}(\ln |f(x)|)^{k}-$ $\ln ^{k}(1 / f(x)) /(1 / f(x))$ and recalling that $\|f\|_{x}=1$ we see that $\left||f(x)|^{p-1} \ln ^{k}\right| f(x)\left|\mid \leqslant(k /(p-1) e)^{k}\right.$ a.e. Hence,

$$
\left.\left.\left|\int_{\text {supp }(\rho)}\right| f\right|^{p-1}(\ln |f|)^{k} \operatorname{sgn}(f) h d \mu\left|\leqslant\left(\frac{k}{(p-1) e}\right)^{k} \int_{X}\right| h \right\rvert\, d \mu
$$

showing that $\phi_{f}^{(k)}(p)$ exists and is finite for each $p \in(1, \infty), k$ a positive integer.

Now, fix $p \in(1, \infty)$ and consider the Taylor polynomial expansion of $\phi_{f}(q), q \in(1, \infty)$, of degree n and remainder term $R_{n}(q)$. Here we have that for some ξ between p and q that

$$
\begin{aligned}
\left|R_{n}(q)\right| & \left.=\left.\left|\frac{(p-q)^{n+1}}{(n+1)!} \int_{\operatorname{supp}(f)}\right| f\right|^{\xi-1}(\ln |f|)^{n+1} \operatorname{sgn}(f) h d \mu \right\rvert\, \\
& \leqslant \frac{(n+1)^{n+1}}{(n+1)!e^{n+1}}\left|\frac{(p-q)^{n+1}}{(\xi-1)^{n+1}}\right|
\end{aligned}
$$

By an asymptotic formula for the Gamma function [18, p. 253],

$$
\frac{(n+1)^{n+1}}{(n+1)!e^{n+1}}=\frac{1}{\sqrt{2 \pi(n+1)}(1+\mathcal{O}(1 /(n+1)))}
$$

so that we see that the Taylor series of $\phi_{\lambda}(q)$ converges to $\phi_{j}(q)$ in the interval $[(p+1) / 2, p+(p-1)]$. From this it follows that $\phi_{f}(p)$ is analytic for $p \in(1, \infty)$. From this observation one has immediately that

Theorem 4. If $\tau_{f}(p)$ equals the same value of V for an infinite set of $p \in(1, \infty)$ having an accumulation point in $(1, \infty)$ then $\tau_{f}(p)$ is identically this value in V for all p.

Proof. Suppose $\left\{p_{i}\right\}_{i=1}^{\times} \subset(1, \infty), p_{i} \rightarrow p_{0} \in(1, \infty)$ with $\tau_{i}\left(p_{i}\right)=0 \in V$ for all i. Fix $h \in V$ and consider $\phi_{f}(p)$ for this h. Since $\phi_{f}(p)$ is analytic at p_{0} and $\phi_{f}(p)$ vanishes at each p_{i} by the characterization of best L^{p} approximations, it follows that $\phi_{l}(p) \equiv 0$ for all $p \in(1, \infty)$ by analytic continuation. Thus,

$$
\int_{x}|f|^{p} \quad \operatorname{sgn}(f) h d \mu=0
$$

$\forall p \in(1, \infty)$ and $\forall h \in V$. Hence $0 \in V$ is the best L^{p} approximation to f for all $p \in(1, \infty)$.

Example 1 shows that the requirement that the accumulation point be in $(1, \infty)$ is needed in the above theorem. This is not the case in the discrete setting. Specifically, let $X=\{n\}_{n=1}^{x}, \mathscr{P}(X)$ and $\mu(n)=1$ for all n. Write $l^{p}(Z)$ for $L^{p}(X, \mathscr{B}, \mu)$. Let $f \in l^{\prime}(Z)$ be fixed with $\|f\|_{x}=1$ and let $V \subset l^{1}(Z)$ be a finite dimensional subspace not containing f. Then we have

Theorem 5. Suppose $\tau_{i}\left(p_{i}\right)=0$ for $\left\{p_{i}\right\}_{i=1}^{\prime}$ with $p_{i} \uparrow x$. Then $0 \in V$ is the best approximation to f for all $p \in(1, \infty)$.

Proof. Let $\gamma_{1}>\gamma_{2}>\gamma_{3}>\cdots$ denote the distinct values taken on by $\left\{\left|f_{i}\right|\right\}_{i=1}^{\times}$. Now, by hypothesis, \mathbf{O} being the best $l^{p,}(Z)$ approximation to \mathbf{f} from V implies that

$$
\begin{equation*}
\sum_{i=1}^{\infty}\left|f_{i}\right|^{p_{j}-1} \sigma\left(f_{i}\right) h_{i}=0 \quad \forall \mathbf{h}=\left\{h_{i}\right\}_{i}^{\prime}, 1 \in V \tag{1}
\end{equation*}
$$

and conversely, where we have written $\sigma\left(f_{i}\right)$ for $\operatorname{sgn}\left(f_{i}\right)$. Now, consider the sums for $\mathbf{h} \in V$ fixed

$$
\begin{equation*}
\sum_{\left|f_{i}=-i\right|} \sigma\left(f_{i}\right) h_{i} \quad \text { for } \quad l=1,2, \ldots \tag{2}
\end{equation*}
$$

We claim that for each l, there exists J such that $j \geqslant J$ implies (2) sums to 0 . Indeed, if not, let γ_{k} be the largest γ_{l} for which (2) is not zero on some subsequence of $\left\{p_{j}\right\}$. Then for $\mathbf{h} \in V$ and p_{j} sufficiently large we have that

$$
\begin{aligned}
& 0 \frac{1}{\gamma_{k}^{p_{i}}} \sum_{i=1}^{x}\left|f_{i}\right|^{p_{i}} \quad \sigma\left(f_{i}\right) h_{i} \\
& =\frac{1}{\gamma_{k}^{p_{i}-1}} \sum_{\left|f_{i}\right|>i_{k}}\left|f_{i}\right|^{p_{i}-1} \sigma\left(f_{i}\right) h_{i}+\sum_{\left|f_{i}\right|=i_{k}} \sigma\left(f_{i}\right) h_{i} \\
& \quad+\frac{1}{\gamma_{k}^{p_{i}}} \sum_{\left|f_{i}\right|<i_{k}}\left|f_{i}\right|^{p_{i}}{ }^{1} \sigma\left(f_{i}\right) h_{i} \\
& =0+\sum_{\left|f_{i}\right|=i_{k}} \sigma\left(f_{i}\right) h_{i}+\frac{1}{\gamma_{k}^{p_{i}}} \sum_{\left|f_{i}\right|<i_{k}}\left|f_{i}\right|^{p_{i}-1} \sigma\left(f_{i}\right) h_{i} .
\end{aligned}
$$

Now observe that for $p_{i}>2$.

$$
\begin{aligned}
\left.\left.\left|\frac{1}{\gamma_{k}^{p_{i}}} \sum_{\left|f_{i}\right|<i_{k}}\right| f_{i}\right|^{p_{i}}{ }^{1} \sigma\left(f_{i}\right) h_{i} f_{i} \right\rvert\, & \leqslant \frac{1}{\gamma_{k}^{p_{i}}} \sum_{\left|f_{i}\right|<\gamma_{k}}\left|f_{i}\right|^{p_{i}}{ }^{1}\left|h_{i}\right| \\
& \leqslant\left(\frac{\gamma_{k}+1}{\gamma_{k}}\right)^{p_{i} 1}\|\boldsymbol{h}\|_{1} \\
& \rightarrow 0 \quad \text { as } \quad p_{i} \rightarrow \infty .
\end{aligned}
$$

Hence, we have that $0=\sum_{\left|f_{i}\right|=i_{k}} \sigma\left(f_{i}\right) h_{i}=\sum_{\left|f_{i}\right|=i_{k}}\left|f_{i}\right|^{p_{i}-1} \sigma\left(f_{i}\right) h_{i}$ for all j sufficiently large.

However, if there exists p_{i} such that $\sum_{\left|f_{i}\right|=; i,}\left|f_{i}\right|^{p_{i}-1} \sigma\left(f_{i}\right) h_{i}=0$ then $\sum_{\mid f_{i}=\eta_{i}} \sigma\left(f_{i}\right) h_{i}=0$. Thus, for any $p \in(1, \infty)$ one then has that $\sum_{\mid f i=i_{i}}\left|f_{i}\right|^{p} \quad \sigma\left(f_{i}\right) h_{i}=0$. Since for each l there exists p_{j} such that (2) is zero it follows that for each $l=1,2, \ldots$ and $p \in(1, \infty)$ we have that

$$
\sum_{\left|f_{i}\right|==i_{i}}\left|f_{i}\right|^{p} \quad \sigma\left(f_{i}\right) h_{i}=0 .
$$

Hence,

$$
\sum_{i=1}^{2}\left|f_{i}\right|^{p} \quad \sigma\left(f_{i}\right) h_{i}=\sum_{i=1}^{\infty} \sum_{\left|f_{i}\right|=i_{i}}\left|f_{i}\right|^{p} \quad \sigma\left(f_{i}\right) h_{i}=0 .
$$

Thus, \mathbf{O} is the best $l^{\prime \prime}(Z)$ approximation to f for all $p \in(1, \infty)$.

Acknowledgments

This research was supported in part by the Naval Environmental Prediction Research Facility, Monterey, California, ONR-N00014-84-0591; and the National Science Foundation, ATM-8510664.

References

1. B. O. Bıörnestal, Local Lipschitz continuity of the metric projection operator, in "Approximation Theory," Banach Center Publ. 4, pp. 43-53, PWN, Warsaw, 1979.
2. J. Desclolx, Approximations in L^{p} and Chebyshev approximations, SIAM J. 11 (1963), 1017-1026.
3. F. R. Deutsch and P. H. Maserick, Applications of the Hahn-Banach theorem in approximation theory, S/AM Rev. 9 (1967), 516-530.
4. R. Fletcher, J. A. Grant, and M. D. Hebden, The continuity and differentiability of the parameters of best linear L_{p} approximations, J. Approx. Theory 10 (1974), 69-73.
5. R. Fletcher, J. A. Grant and M. D. Hebden, Linear minimax approximation as the limit of best L_{ρ} approximations, SIAM J. Numer. Anal. 11 (1974), 121-135.
6. G. Freud, Eine Ungleichung für Tschebysheffsche Approximationspolynome, Acta Sci. Math. (Szeged) 19 (1958), 162-164.
7. R. Holmes and B. Kripke, Smoothness of approximation, Michigan Math. J. 15 (1968), 225-248.
8. S. J. Karlin and W. J. Studden, "Tchebycheff Systems: With Applications in Analysis and Statistics," Wiley-Interscience, New York, 1966.
9. A. Kroó, The continuity of best approximations, Acta Math. Acad. Sci. Hungar. 30 (1977), 175-188.
10. A. Kroo, Differential properties of the operator of best approximation, Acta Math. Acad. Sci. Hungar. 30 (1977), 319-333.
11. A. Kroó, The Lipschitz constant of the operator of best approximation, Acta Math. Acad. Sci. Hungar. 35 (1980), 279-292.
12. A. Kroó, On the convergence of Polya's algorithm, J. Approx. Theory 30 (1980), 139-148.
13. D. Landers and L. Rogge, Natural choice of L_{1}-approximants, J. Approx. Theory 33 (1981), 268-280.
14. D. J. Newman and H. S. Shapiro, Some theorems on Cebysev approximation, Duke Math. J. 30 (1963), 673-681.
15. G. Polya, Sur un algorithm toujours convergent pour obtenir les polynomes de meilleure approximation de Tchebycheff pour une fonction continue quelconque, C. R. Acad. Sci. Paris 157 (1913). 840-843.
16. S. J. Poreda, A note on the continuity of best polynomial approximations, Pacific J. Math. 51 (1974), 271-272.
17. J. Rice, "The Approximation of Functions," Vol. II, Addison-Wesley, Reading, Mass., 1964.
18. E. T. Whittaker and G. N. Watson, "A Course of Modern Analysis," 4th ed., Cambridge Univ. Press, LondoņNew York, 1965.
