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For a fixed dimensional subspace and a function £, both contained in the intersec-
tion of a family of L” spaces. the best approximation operator 7, may be considered
as a function of p as well as of the objective function /. We study the best
approximation operator considering f fixed and p variable. 1987 Academic Press. Inc

1. INTRODUCTION

Let (X, 4, u) be a measure space and suppose that V' is a finite dimen-
sional subspace of L'(X, %, u) L (X, #4, 1) and that fe {L'(X, %, u)n
L*(X, A, u)}\V. For 1 <p< x define the best L” approximation operator
at p, 1{p) to be the unique best approximation to f from } using the
L’-norm. That is, t{p)=v, with |f—v,[l,=min}|f—vl,: veV}, where
hll,= {{x |hl” du}'". That v, exists and is unique follows from the fact
that V' is a finite dimensional subspace of a strictly convex normed linear
space. For p=1 and p=oc define t{p) to be the set of best
approximations to /'in the corresponding L” norm from V. Finally, define
NAp) by N(p)=I|lf—1Ap)l, for 1 <p<ooand N(p)=|/—hl, hetlp)
forp=1orp=oc.

In this setting we shall study the dependence of the best L7
approximation operator, t,{p), and the distance function, N{p), on p. The
behavior of the best approximation operator in various settings has been
studied by many authors. The first study of this sort was given by Freud
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[6], who showed that the best uniform approximation operator mapping
Cla, b] into a finite dimensional Haar subspace satisfies a local Lipschitz
condition at each fe C[a, b]. These results were extended by Newman and
Shapiro in [14]. In [9, 16] uniform continuity and uniform Lipschitz
properties of this operator as a function of the elements being
approximated was considered. In [ 1, 7, 10] similar studies of this operator
in a fixed L7 space were presented. Differentiability properties as a function
of the element being approximated and the behavior of the Lipschitz con-
stant as a function of the dimension of the approximating subspace were
studied in {10, 11]. Finally, in [4] the dependence of the best
approximation problem on the norm being used was considered. Thus, for
p =2, it was shown that the coefficients of the best L? approximant to a
fixed f are continuous and differentiable functions of p when approximating
on a continuum. It was noted there and in [5] that this continuous depen-
dence on p is precisely the sort of information that one needs in order to
develop a practical implementation of the Polya algorithm [12,15]. In
fact, in our setting the Polya algorithm and similar results for L' [13] can
be interpreted as statements about the continuity of 7/{p) at p=co and

p=1

2. MAIN RESULTS
We begin by establishing two facts about N (p).

THEOREM 1. Assume that p(X)<oc. Then, either NAp)/(w(X))'" is a
strictly increasing function of p for 1 <p < oo or there exists ve V such that
td{p)=v forall pe (1, ) and | f—v| =k ae. on X with NAp)=k[p(X)]""
for all pe (1, w).

Proof.  Suppose that 1 <p <g<co. Then by the definition of t{p) and
Hoélder’s inequality

i =([ 1r=sira) <(] - a)

< (X)) e (jy f=lq)l du) = (kX)) NAg)

This shows that N/p)/(u(X))'” is an increasing function of p. Now
equality can occur in the second inequality if and only if | f—t{q)| =k a..
for some k+#0 as f¢ V. If strict inequality holds for each pair p, ¢ with
p < q then we are done. If on the other hand, equality holds for some p and
g, 1 <p<q<co, then we must have that | f—1,{g)| =k a.e. We shall show
that in this case that h=1,(q) is also equal to t(s) for all se (1, o).
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Now it is known [3] that A=1/r), | <r< x, if and only if

| f—h|" "sgn(f—h)edu=0 Veel.

Jy

For r=¢, we must therefore have that

[ kK9 'sgn(f—h)yvdu=0 Yoe V.

vy

Thus,

j sgn(f—h) v du=0
X
and

J’M k* Usgn(f—h)odu=0  YoeV
X

and each se (I, oc ). Therefore, by the characterization theorem for best L*
approximations from V stated above we have that he l is the best L°
approximation to f for each se (1, «). Finally,

N,<s):<jx,|f—h|&du> — k[u(X)]"

for all se (1, cv) in this case. |

Next, we show that N{p) is locally Lipschitz. In this theorem for con-
venience we shall normalize the problem by assuming p(X)=1.

THEOREM 2. Assume w(X)=1. Then, for p,ge (1, ), |p—q| <1 there
exists a constant K>0, K independent of p and q such that
INAp) = NAg)l < Klp—ql.

Proof. The finite dimensionality of V implies that there exists M < «
such that [[t{g)l, <M for all ge (1, oc). Suppose 1 <g <p < oc. Then,

OSN(p) = NAQ) < If =ty 07 IS =kl g7 = 1Lf = T Ag)l,

w[(H.f—t,{q)“)/"f’ vW A,

showing that

N(p)=N@) < |/ (B” 4 —1)
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where B=((| fIi, + M)/NA1))"". Thus, we have that

IN(p)=N(g)l < (I f]l. BlnB)|p—ql=Klp—gql

as desired. |

Note that although N/ p) is strictly increasing unless t{(p)=tAq) for all
p and g, Theorem 1 does not imply 7, is 1-1. The following examples
illustrate this.

ExampLE 1. In [17, Vol 2, p.248] Rice gives an example due to
Descloux [2] in which the Polya algorithm fails. Specifically, a continuous
function f on [—1,1] is given such that for V={ax:aeR} and
td{p)=a,x, a, fails to converge as p — oc. In fact, it is shown that there
exists a monotone sequence p, such that a,, < —} and a,,,, > Thus,

7,(p) assumes every value in (—}, §) infinitely often.

ExampLE 2. Consider X = {1,2,3,4,5} and u({i})=1/5, the counting
measure so that L7(X, 4, i) is simply R® with the /” norm. Set f=(1, 2,
—4, (34 ./657)/6, (3—./657)/6) and V= {ua(1,1, 1,1, 1): a is real}. Then
it is easily seen that O =1(2)=144) # 143).

ExaMpPLE 3. Consider R® with the #” norm. Set f=(0,0,0,2, —1, —1)
and V={a(l,1,1,1,1, 1) « is real}. Then t(1)=1/(2)=0, 143)=
—0.03257654 and (o) =1

Example 3 has an interesting implication for L” approximation when
p#1, 2 or . Specifically, for a given L” approximation problem with
p=1, 2 or oo there may be a direct method for calculating the best L”
approximation. However, for an L” approximation problem with p not one
of these three values all current computational methods are iterative and
require a starting estimate for t{p). For example, in computing a best L>?
approximation one might start with an initial estimate for 7(3) of it (1) +
11A2). Unfortunately, Example 3 shows that this need not be a better
starting value than either (1) or t{2).

Our last comment about the function N/ p) is a conjecture. Namely, we
conjecture that N p) is a concave function of p. That is, for p, ge(1, o0)
and 0</A< 1, AN(p)+ (1 —A)NAg) < NAAp+ (1= 4) q).

We now turn to the best approximation operator 7{p). As shown in the
examples above, 7,{(p) need not be 1-1. The main question that we shall
consider now is how many times can t{p) assume a fixed value. We first
consider this question in RY. Thus, let X = {1, 2,.., N} and u({i})=1/N be
the counting measure so that L”(X, %, u) becomes R" with the /7 norm. In
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this setting, we show that t(p) is either constant or at most ¥ — 1 to 1. We
will have need of the following [8, p. 9, (3.1}].

LEMMA. If O0<4i,<i,< - <4, then for 1e€la.b]. V= c(t)=
DU A ey, Feal} s an i dimensional Haar subspace of Cla. b].

Now, let V' be a subspace of R" with dimension=n< N and fix f=
(f1sen [y)ERMV. For fixed p, pe (1, o) write t{p)=(t\"',... 7\{"), where
t{p)e V and is the best /" approximation to / from V. Furthermore, set
r’=f—t{p)=(r{"..., r\¥"). Then,

THEOREM 3. Suppose that for a fixed pe(l, oc), the coordinates of
(177 es 1K) contain k < N distinct nonzero values Ay,..., 4, ordered as
0<iy< -+ <4, Then either t(q) is equal to t{p) for all g€ (1, x¢) or else
tAq) can equal T p) for at most k — 1 distinct values of q (including the case
qg=p).

Proof- FixveV, v=(v,,..,vy) and define

N A
Foy= Y |r"" Usgn(riryv,= Y bil !

i=1 =1

where we have rewritten this sum in terms of the nonzero values of |r!”)].
Now suppose that t{p) is not best for all ge(1, oc). Then, at each
ge (1, ) for which t(p) is optimal, we must have F(g)=0. Assuming v
has been chosen such that F(r) # 0, which is possible since t{ p) is not best
for all ge (1, oc), we have that F{r) has at most k — | zeros in (1, o0 ) by the
lemma. |

Note that Example 3 shows that this result is sharp. That is, observe that
c* is the best /” approximation to f provided ¢* minimizes 3{c|”+ 2|1 +
¢|” + 12— ¢|”. Setting ¢ = —0.01, consider g(p)=3(0.01)" "' —2(0.99)” '+
(2.01)7 ', Since g(1) >0, g(3) <0 and ¢(2) > 0 we sce that there exist p, and
p, with 1 <p, <3< p, <2 for which g(p,)=g(p-)=0. Since g(p) is essen-
tially the derivative of the expression that ¢* must minimize it follows that
(—001)(1,1,1,,1,1) is the best /”* and /7 approximation to f from V.
Finally, note that f—t{p,) has cxactly three nonzero distinct absolute
values in its coordinates.

Along the same lines one has

CoROLLARY 1. [f'the set {|riP)|} N
t(p)=1/q) for all g€ (1, x0).

Note that this is not a necessary condition, as shown by the following
example.

contains only one distinct value then
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ExaMpLE 4. Let f=(4, 1,4)eR’ and set V=span{(—1,0,1)}. Then
1dp)=1(0,0,0) for pe(1, c0) and {|r{?’|}?_, has two distinct values. Also,
note that this example shows -that even if t{p)=~h for all pe (1, o), there
need not be a unique best /! or /* approximation to f.

We now wish to return to the general setting. Thus, let 1< p < oo,
feL™(X,B,u), VoL'AL™ be a finite dimensional subspace and let
fe(L'n LNV with || f||..=1. Fix e V and define for 1 <p < o

#(p)=] If1"""sen(f) hdu

Observe that f, he L' n L™ implies [¢p)| < /12 1Al du < oo for each
pe (1, 0), so that ¢{ p) is a well-defined function of p.
Now it is easily seen that ¢ {p) is an analytic function of p for pe (1, o).
To establish this one first observes that
k
LEADY [ i (i 1 sgnt ) h
/4 supp(f)
By considering the derivative of the function s(t) = In* 1/¢* for te[1, ®)
and >0, one sees that |s(t)| < (k/ae)* with equality occurring at ¢ = ¢/
(actually, 0<s(r)<{(k/ae)*). Thus, rewriting |[f(x)|” '(In]f(x)])* —
In*(1/f(x))/(1/f(x)) and recalling that |f]], =1 we see that
A" M n* f()] | < (k/(p—1) e)* ae. Hence,

J

supp{ /)

k k
/17~ in ] 1)* sgn(f)hdu‘<<—~—> [ 141 du
(P—Dye)

showing that ¢{¥)(p) exists and is finite for each pe (1, ), k a positive
integer.

Now, fix pe (1, o) and consider the Taylor polynomial expansion of
#Aq), ge (1, w), of degree n and remainder term R,(g). Here we have that
for some ¢ between p and ¢ that

_p=g)! £1 il
R =[S D [ e i seat)
(n+])n+l (p_q)n+l|
\(n+1)!€»z+l (é:_l)n+l"

By an asymptotic formula for the Gamma function [18, p. 253],

(n+1)n-+-l _ 1
(n+De"™ ' Ppin+ 1) (1+0(1/(n+ 1))

640-4973-6
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so that we see that the Taylor serics of ¢ ,(¢) converges to ¢ ,{¢) in the inter-
val [(p+1)/2, p+(p—1)]. From this it follows that ¢ p) is analytic for
pe(l, ). From this observation one has immediately that

THEOREM 4. If T1{p) equals the same value of V for an infinite set of
pe(l, w0) having an accumulation point in (1, 5c) then t{p) is identically
this value in V for all p.

Proof. Suppose {p, i, < (1, %), p;—=poe(l, ) with t(p,)=0¢€ V for
all /. Fix he V and consider ¢{p) for this A Since ¢{p) is analytic at p,
and ¢,p) vanishes at each p, by the characterization of best L’
approximations, it follows that ¢ {p)=0 for all pe (1, sc) by analytic con-
tinuation. Thus,

~

J 71 san( ) k=0

Vpe(l,oc) and Vhie V. Hence 0 e V is the best L” approximation to f for
all pe (1, o).

Example 1 shows that the requirement that the accumulation point be in
(1, oo) is needed in the above theorem. This is not the case in the discrete
setting. Specifically, let X = {n}7_,, #=2(X) and u(n)=1 for all n. Write
1"(Z) for L”(X, A, u). Let fel'(Z) be fixed with | f||, =1 and let V< {'(Z)
be a finite dimensional subspace not containing /. Then we have

THEOREM 5. Suppose t{p;) =0 for {p,}/ , withp,1 x. Then O V is the
best approximation to f for all pe (1, ).

Proof. Let y,>v,>7;> -~ denote the distinct values taken on by
{1fi1}72 . Now, by hypothesis, O being the best /”(Z) approximation to f
from V' implies that

S SIm a(f)h =0  Yh=1{h}/ eV (1)
i=1
and conversely, where we have written o( f;) for sgn( f;). Now, consider the
sums for he V fixed

We claim that for each /, there exists J such that j = J implies (2) sums to
0. Indeed, if not, let y, be the largest v, for which (2) is not zero on some
subsequence of {p,}. Then for he ' and p, sufficiently large we have that
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Z Lfil7 el fi) b

i=1

1 .
=—— Y A e e Y )k

i .
K ey Ll =

—— . L e

7k 1l <2y

=+

l
=0+ Y o(Dht—— X 17 el ki

il =1 Tk LAl <7

Now observe that for p;> 2.

1

- L I ‘6(./‘})11,f}\< > At h
"k L1l <7y ‘k 1<y
ay pi 1
<<ﬂ> I,
ik
-0 as p,—>

Hence, we have that 0=3,, . a(f) ;=3 _, [£I” P a(f;) h; for all j
sufficiently large.

However, if there exists p, such that 3, _, /1" ' a(f;)h;=0 then
me o(f)h,=0. Thus, for any pe(l, < ) onc then has that
sz, 1717 'a(f;)h;=0. Since for each [ there exists p, such that (2) is
Zero itlfollows that for each /=1, 2,... and pe (1, «c) we have that

SO Yol ) hy=0.

il =,

Hence,

S e k=Y, S 107 e(f) k=

L1 =7

Thus, O is the best /"(Z) approximation to ffor all pe (1, o). |}
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